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Abstract
Potatoes are an important crop in the world; they are the main source of food for a 
large number of people globally and also provide an income for many people. The 
true forecasting of potato yields is a determining factor for the rational use and max-
imization of agricultural practices, responsible management of the resources, and 
wider regions’ food security. The latest discoveries in machine learning and deep 
learning provide new directions to yield prediction models more accurately and 
sparingly. From the study, we evaluated different types of predictive models, includ-
ing K-nearest neighbors (KNN), gradient boosting, XGBoost, and multilayer per-
ceptron that use machine learning, as well as graph neural networks (GNNs), gated 
recurrent units (GRUs), and long short-term memory networks (LSTM), which are 
popular in deep learning models. These models are evaluated on the basis of some 
performance measures like mean squared error (MSE), root mean squared error 
(RMSE), and mean absolute error (MAE) to know how much they accurately pre-
dict the potato yields. The terminal results show that although gradient boosting and 
XGBoost algorithms are good at potato yield prediction, GNNs and LSTMs not only 
have the advantage of high accuracy but also capture the complex spatial and tempo-
ral patterns in the data. Gradient boosting resulted in an MSE of 0.03438 and an R2 
of 0.49168, while XGBoost had an MSE of 0.03583 and an R2 of 0.35106. Out of all 
deep learning models, GNNs displayed an MSE of 0.02363 and an R2 of 0.51719, 
excelling in the overall performance. LSTMs and GRUs were reported to be very 
promising as well, with LSTMs comprehending an MSE of 0.03177 and GRUs 
grabbing an MSE of 0.03150. These findings underscore the potential of advanced 
predictive models to support sustainable agricultural practices and informed deci-
sion-making in the context of potato farming.
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Introduction

Agricultural productivity is foundational to global food security and economic 
development, underpinning the sustenance and prosperity of societies around the 
world. As the global population continues to grow at a rapid pace, reaching approxi-
mately 9.7 billion by 2050, the challenge of meeting increasing food demands while 
preserving natural resources is becoming increasingly urgent. Crop yield optimiza-
tion is essential in this context, as it maximizes the use of limited resources such as 
water, fertilizers, and land, thereby enabling consistent food production and stabiliz-
ing market dynamics (Jayne and Sanchez 2021; Ortiz-Bobea et al. 2021). The con-
ventional approach to crop yield forecasting involved heavily observing historical 
data and the professional opinions of the agronomists. Such methods usually apply 
a simple statistical analysis or a linear regression model, which might be fairly accu-
rate in a long-term stable environment but are incapable of accurately including a 
number of factors that interact with each other in the modern agricultural complex. 
These mechanisms include the phenomena of modified weather conditions, deple-
tion of soil fertility, the emergence of new pests and diseases, and evolving con-
sumer preferences, which collectively affect the standard predictive yield models 
(Paudel et al. 2021; Zaki et al. 2023a).

Figure 1 offers a visualization of potato production against other major types of 
agricultural output. The graph shows the magnitude of potato cultivation in propor-
tion to crops, including wheat, rice, maize, and soybean. Through the delivery of a 
graphic that indicates the average production volume or yield of potatoes as com-
pared to other crops, you can see that potatoes are among the most significant crops 

Fig. 1   Comparison between potato production and other agricultural crops
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in the world and contribute greatly to food production. By acknowledging the rela-
tionship between potatoes and other crops and disseminating information regarding 
their relative importance, insights into the new agricultural trends, resource alloca-
tion, and food security systems can be drawn.

The importance of potatoes as a globally significant crop can hardly be over-
stated as they are the major staple food source for many cultures, and they are full 
of healthy carbohydrates and nutrients. As a semi-aquatic crop, potatoes can be cul-
tivated across different climates and varied types of soils, making a good filling for 
the niche of the world food supply. But at the same time, careful management is 
necessary for the potatoes as they are very prone to different diseases like late blight, 
which can destroy whole harvests. Also, potatoes’ susceptibility to water stress and 
deficiency of some nutrients forces farmers to adhere to precise irrigation and ferti-
lization practices. These technologies (machine learning and deep learning) have the 
potential to increase the accuracy of potato yield forecast and cultivation strategies. 
The use of data collected from rainfall records, soil moisture information, and plant 
health indicators would support this kind of intervention. From this, we get not only 
increased yields but also more efficient resources and sustainability. However, it all 
the same increases the productivity and resilience of potato farming (Klompenburg 
et al. 2020; Cao et al. 2021a, 2021b).

Figure 2 shows the yearly production trend of potatoes, which ranged from 1990 
to 2010. The plot serves as a time series depicting how the yield of potatoes has 
changed over the twenty years, revealing whether the yield is growing or declining 
and also the periods when the yield is stable. Such actualization needs to be taken 
into consideration in understanding the dynamics of potato productivity during the 
historical period, which may have been affected by different factors like strategies 
in agricultural processes, changes in climatic conditions, pest and disease manage-
ment, and or variations in utilization and cultivation methods. It is possible to meas-
ure the trend, which helps stakeholders evaluate the level of potato production and 

Fig. 2   Potatoes yield over time
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determine the periods of rapid changes. Besides this, such historical background 
could be used for a prognosis, which will allow adjustments in agricultural practices 
to enhance the yield of potatoes. The figure can also be a means to associate harvest 
variations with external events, such as technological improvements, policy adjust-
ments, or changes in market demand.

Recently, the emergence of complicated machine learning (ML) (Bali and Singla 
2022) and deep learning (DL) (Shook et al. 2021) technologies that can manipulate 
enormous data sets has brought an evolutionary change to the way crop yields are 
forecast and give very precise estimates. The methods are based on different types of 
data collected by satellites and drones, weather and soil sensors, farm management 
records, etc. ML and DL techniques may use these resources to draw out the abnor-
malities and relationships buried within the data, which provides more precision and 
fineness in prediction models. The ability to develop and improve through contin-
uous learning with machine learning models allures among their greatest powers. 
New data would rather allow models to adjust their forecasts and thus make sure 
the accuracy is high even for a long time. It helps them to have quick interactive 
responses to the dynamically changing agricultural environment, not like others that 
depend on initial data sets that may not alter.

ML and DL models’ ability for granularity is another main advantage of them. 
Such techniques would allow for predictions at the field level or even plant level, 
which is necessary to conduct interventions of a targeted and precise nature. Farm-
ers may resort to this detailed data and develop their irrigation practices, accuracy of 
fertilizer application, and control of pests, which, in the long run, will improve their 
productivity and efficiency (Elavarasan and Vincent 2020; Durai and Shamili 2022). 
ML/DL models can carry out this synthesis with a vast range of scales and sources 
of data, giving a unified view of crop states and yield potential. For example, satel-
lites might offer macro pictures of crop patterns and health, and sensors will provide 
local data for soil moisture and nutrients. ML and DL models would benefit from 
the integration of these different data sets since the power of the latter is increased 
(Darwin et al. 2021; Abbas et al. 2020; Shahhosseini et al. 2021).

The import of advanced forecasting models is not confined to individual farms but 
is dedicated to various components of the agricultural supply chain. Correct yield 
predictions ensure the right planning for storage, transportation, and sales, which 
also ensures that the market remains stable and that the risks of food insecurity are 
mitigated. This generates a positive cycle, which is beneficial to both producers and 
consumers (Cedric et  al. 2022). However, the process of using ML and DL tech-
niques in crop yield prediction is not always free from problems as well. Data sets, 
which are of high quality and large scale, are essential for training and validation of 
these models, the sources of which may not be readily available or accessible, as in 
resource-limited areas. Additionally, the sophistication of these models may also be 
a drawback because their outputs sometimes cannot be easily understood by users 
who may need to know the reason for specific predictions given by such models 
(Wolanin et al. 2020; Kang et al. 2020).

They are keeping in compliance with fairness and bias removal. At the same time, 
data inputs and model training are essential factors that ensure the reliability and 
equitable application of ML and DL approaches in agriculture. The prejudices can 
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be due to uneven data sets. Thus, the predictions may receive a slant that can disad-
vantage specific groups or regions. Therefore, there is a need to test the validity of 
models in varying conditions and different data sources (Rashid et al. 2021; Sujatha 
et al. 2021; Schwalbert et al. 2020). In spite of the difficulties still associated with 
ML and DL strategies to fuel future yield prediction and agriculture transformation, 
their potential is enormous. These technologies help farmers adopt better farming 
methods, conduct agricultural planning beyond the limits of the farm, and shape the 
policy for sustainable and climate-resilient agricultural systems (Wani et al. 2022; 
Alibabaei et al. 2021).

A comprehensive comparison of established ML and DL applications for the 
prediction of crop yield is aimed at this paper to discover what the state-of-the-
art approaches can do, reveal their limitations, and predict what could be achieved 
through further development in this area. The paper presents the results of different 
models’ performance in other countries. It outlines the promising features as well as 
directions for further development of the models. In addition, this paper will explore 
the far-reaching consequences of the integration of ML and DL techniques into agri-
culture, including probable impacts on policy, economics, sustainable development, 
and ecology. The main purpose is to empower the interested parties with the knowl-
edge they need to use data-based technologies in the future for research, develop-
ment, and implementation of agricultural technologies (Nevavuori et  al. 2020; 
Anami et al. 2020; Chandraprabha and Dhanaraj 2020).

In sum, this paper aims to contribute to the growing body of knowledge on the 
use of advanced technologies in agriculture. By identifying effective strategies for 
improving crop yield prediction and fostering sustainable agricultural practices, the 
study aspires to facilitate more informed decision-making and the adoption of inno-
vative solutions throughout the farming industry.

The study has the following specific objectives to address gaps in current 
literature.

1.	 Comprehensive evaluation of predictive models:

•	 Assess various machine learning (KNN, gradient boosting, XGBoost, MLP) 
and deep learning (GNNs, GRUs, LSTM) models for predicting potato yield, 
using metrics like MSE, RMSE, and MAE to identify the most accurate mod-
els.

2.	 Handling agricultural data complexity:

•	 Utilize advanced ML and DL techniques to manage complex agricultural 
data, capturing intricate spatial and temporal patterns that traditional linear 
models cannot handle.

3.	 Enhancing resource management and food security:

•	 Improve agricultural practices and resource management by providing precise 
yield predictions, supporting sustainable agriculture and food security.

4.	 Integration of diverse data sources:
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•	 Combine weather conditions, soil properties, historical yield data, and agro-
nomic characteristics to create generalized, robust predictive models applica-
ble across different regions.

5.	 Model interpretability and usability:

•	 Focus on explainable AI to make advanced predictive models accessible and 
actionable for farmers and policymakers.

6.	 Contribution to sustainable development

•	 Explore the broader impact of ML and DL integration in agriculture, includ-
ing policy, economic, and ecological implications, to support sustainable 
development and climate-resilient farming practices.

Related Works

Crop yield prediction is considered critical for agricultural planning, resource man-
agement, and food security. Considering that most people eat potatoes and they are 
crucial to the business, it becomes vital to be able to estimate the amount to be cul-
tivated on each. The ability to accurately forecast yields of potato crops allows those 
involved, namely farmers, lawmakers, and others, to make wise decisions, utilize 
resources efficiently, and prevent famine. The works that can be seen in this section 
are devoted to the prediction of crop returns for potatoes. By considering a range of 
methods, data sources, and technological innovations, the evolving research environ-
ment aimed at improving knowledge and predictive capabilities in the area of potato 
agriculture is brought to the limelight.

ANNs have been applied effectively in agricultural remote sensing for a number 
of applications, such as crop classification and crop area estimation. Two types of 
ANNs are analyzed in the literature (Pandey and Mishra 2017). One is an RBFNN, 
and the other is a GRNN. They are employed to predict the amount of potatoes that 
a crop would produce in various forms. Neural networks are trained and evaluated 
based on leaf area index, biomass, plant height, and other critical indicators of crop 
performance. Both GRNN and RBFNN prove that they can guess how much potato 
the crop will produce and correct the guess. The GRNN is a great guesser due to 
its quick learning and a low spread constant of 0.5. This one is better at this than 
the RBFNN. The study also provides valuable new perspectives on how to employ 
ANNs for precise predictions of crop yields in various farming conditions through 
the comparison of rough surface fields’ productiveness with flat ones. To make wise 
choices in smart farming, you need to be capable of using data captured by sensors 
placed next to the crops to project the output of such crops in the future. In a previ-
ous study (Dubois et al. 2021), the cultivation of potatoes was the focus, but irriga-
tion was essential for the proper growth of crops. The particular problem that was 
analyzed was soil water potential forecast. In the field of machine learning, super-
vised learning algorithms are used to accomplish this. Several tests have been con-
ducted over three years on various cases to demonstrate that procedures for feature 
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selection may be adopted to develop models with appropriate features. Machine 
learning allows for the correct prediction of the water potential numbers for the 
future. This gives us valuable information regarding the utilization of machine learn-
ing techniques to forecast soil water potential and improve agricultural decisions.

There is a high level of knowledge about how machine learning can estimate 
yields, and much of it is specialized. However, there are problems when you try 
to transfer these discoveries to other plants and locations. A full machine learning 
standard for large-scale crop yield predictions is established (Paudel et al. 2021). It 
achieves this by combining the agronomic concepts of crop models with machine 
learning. The baseline is an exemplar of a process that has accuracy, modularity, and 
utility at the forefront. Among the things used to create the explainable predictors 
for explainability in crop growth and development are weather, remote sensing, soil 
records, and the outcomes of field simulations. The process is made up of individual 
parts, which can be used repeatedly for any crop or country. This means that things 
can get even better. Through case studies, the yields of five crops grown in three 
countries were guessed. This demonstrated how competitive the guesses are and 
what changes could be made to improve them in various conditions. As a first step 
toward using machine learning in practical applications, setting a standard for large-
scale crop growth predictions is a big step in the right direction. In trying to deter-
mine the national crop yield, we usually use constructed models of spatial units. 
This often results in errors and uncertainties. Paudel et al. (Paudel et al. 2022) pro-
posed using regional crop yield predictions in the process of using machine learning 
to forecast crop yields at different spatial levels, as it will prevent error propagation. 
A general machine learning process with 35 case studies from nine countries reveals 
lower NRMSE and error at the regional level than a linear trend model. Usually, 
when summing up all the regional machine learning projections, their NRMSEs are 
smaller than those of the country’s operating system predictions. Machine learning 
food yield predictions across regions are precise and demonstrate how areas differ. 
This is why they are ideal for making big policy decisions at all levels of space.

Crop yield forecasting is a process of predicting a crop yield, taking into consid-
eration a number of factors, including location, weather, soil properties, water tables, 
and yield from the last year. In a previous study (Shetty et al. 2021), a combination 
of multilayer perceptron neural network model and random forest regression models 
are employed to predict four of the major crops grown in the Karnataka region. MAE, 
MSE, and RMSE are used to train and test the models. The inputs of the system are 
the weather data and the past yield data from 30 areas in Karnataka. The random for-
est regression and the multilayer perceptron network are both equally capable of mak-
ing reasonable guesses. Based on these results, it is obvious that they can be used to 
predict what happens in the near future. The predictive model is used to estimate crop 
growth in real time using a simple web application. Mishra et al. (2023) analyzed and 
forecasted potato production in eight important South Asian nations from 1961 to 
2028 using advanced time series and machine learning techniques such as ARIMA, 
state space, and XGBoost. In validation, ARIMA and state space models are superior 
to XGBoost. This may imply that it needs to be better tailored. However, every country 
will have a different pattern of trends. These facts about the future potato supply in 
South Asia can be used for food security planning and regional agricultural policies.
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This study (Abrougui et al. 2019) focuses on the impact of tillage systems on soil 
characteristics, food production, and the applicability of artificial intelligence models 
for future forecasts. The most important thing for multiple linear regressions (MLR) 
and artificial neural networks (ANN) is the organic potato crop yield. According to 
the study, the tillage practice and soil characterization have a major impact on potato 
growth. The MLR model can predict crop yield more than the ANN model does. This 
data allows us to understand the relationship between potato production, types of till-
age, and soil properties. Cedric et al. 2022 highlighted concerns about food security on 
the global level, especially in countries that have population growth challenges, such as 
agricultural output and the impact of climate change on crops around the world. With 
the help of machine learning and big data technology, a forecasting model for West 
African countries is given. The study combines data on climate, weather patterns, yield 
of crops, and chemicals for six key agricultural commodities. This makes it easier to 
estimate yields at country level. K-nearest friend, decision trees, and multivariate logis-
tic regression are some models that have proven to work and can help farmers make 
informed decisions.

Since farming is the basis of a country’s economy, Prasad Patnaik and Padhy 
(Prasad Patnaik and Padhy 2023) examined how machine learning can be used in pre-
dicting crop yields and suggesting crops that will do well in particular areas. Several 
approaches can be applied to analyze both supervised and unsupervised machine learn-
ing. The results are checked for accuracy using MSE, MAE, RMSE, and other per-
formance measures after extensive pre-processing of the dataset to ensure accuracy. 
This comprehensive approach aims to apply machine learning methods intelligently to 
achieve a strong predictive and productive framework for food yields.

Through our investigation, the interrelated studies shown in this section prove that 
we are highly reliable at determining potato yields. This reflects how farming and tech-
nology are going to share a relationship in the near future. Both sophisticated machine 
learning methods use remote sensing and the modern versions of traditional approaches 
that significantly benefit from improvements in meteorological data. All these are 
directed toward this aim, which is to say the correct word at the given time. The 
practice of integrating information-based insights and the experience of agronomists 
becomes increasingly critical as the sector progresses. Data scientists, agronomists, 
and agricultural communities joined efforts in the literature to help not only make crop 
yield prediction more accurate but also prevent environmental risks and provide global 
food security.

Materials and Methods

In this part, the paper explains the data sources, pre-processing techniques, model 
setups, and evaluation metrics used in the study of crop yield predictions using 
machine learning and advanced deep learning techniques.
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Dataset

The data for this study was sourced from a public dataset on Kaggle, specifi-
cally designed for crop yield prediction. This dataset includes seasonal crop yield 
records along with a diverse array of features that are expected to influence agri-
cultural outcomes. The analysis of crop yield prediction is a significant area in 
addressing food security and environmental sustainability, which is nowadays the 
major driver toward the increasing population and climate change. To make deci-
sion-making more effective at all levels of agriculture management, from farmers 
to policymakers who are designing to reduce the impact of climate change strate-
gies, better understanding and accurate forecasting of agricultural yield is essen-
tial. For this study, we leveraged the public data from a dataset on Kaggle that 
provides seasonal crop yield records along with information on a diverse array of 
factors that are expected to influence agricultural outcomes. This complex data 
set includes features like weather conditions (e.g., temperature, precipitation, 
humidity), soil properties, historical yield data for different crops, and perhaps 
some other agronomic characteristics such as planting and harvesting dates, irri-
gation practices, and pesticide usage (Crop Yield Prediction Dataset (n.d.)).

The dataset has data covering several years that can be utilized to carry out 
robust analysis and modeling. The geospatial coverage of the data includes differ-
ent countries, thus enabling one to have an understanding of various agricultural 
systems and approaches across different geographical locations. This variety of 
data supply is fundamental in building predictive models that are much more gen-
eralized and flexible in other environments. The dataset has been pre-processed 
to meet the quality and consistency standards by removing the missing data via 
the imputation methods if necessary and by discarding the data if there is no pos-
sibility of imputation. Models and algorithms routinely require normalization and 
standardization of features unless the study specifically addresses this issue.

The history yield data is considered to be the target variable for our predictive 
models, while different other features (for instance, weather, soil, and agronomic 
practices) are used as inputs. By analyzing the correlations between these traits 
and the yield of historical seasons, we proposed to create powerful machine-
learning instruments for forecasting future crop yields for specific areas. In a 
nutshell, Kaggle’s dataset is a valuable data source for training machine learning 
models and, consequently, for the study of crop yield prediction across numer-
ous countries within an extended period. Furthermore, such models could reveal 
trends and evidence that would be used in improving agricultural productivity 
and sustainability.

Figure  3 below represents the key nations that participated in the research, 
bearing in mind the diversity of agricultural practices and climatic conditions that 
they are dealing with. This ensures the multiple perspectives and robustness of 
our models, which are suitable for different settings.
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Data Pre‑processing

The stage of data pre-processing is of paramount importance in the process of pre-
paring the data set to facilitate meaningful machine learning and deep learning anal-
yses. Accurate and reliable machine learning algorithms depend on the presentation 
of clean and transformed data. The data of the present study is a mixture of potato 
crop data together with data from other crops (Călin et  al. 2023). Therefore, data 
pre-processing is implemented to implement tasks that are responsible for the com-
pletion of the study:

•	 Data cleaning. This step involves identifying and handling missing or incomplete 
values in the dataset. For instance, missing weather data or yield values may be 
filled in using imputation techniques, such as mean or median substitution, or 
removed if they are deemed to introduce bias or uncertainty in the analysis.

•	 Feature engineering. Features may be added or transformed based on domain 
knowledge to improve the predictive power of the models. This could include 
creating new features, such as calculating cumulative precipitation or tempera-
ture averages over specific periods, which may be important for crop growth.

•	 Data standardization and normalization. To ensure compatibility across differ-
ent features, especially when working with a variety of data types (e.g., weather, 
soil, and yield data), the dataset must be standardized or normalized. This pro-
cess ensures that all features contribute equally to model training and prevents 
the dominance of certain features due to differing scales.

•	 Outlier detection and handling. Outliers can distort the results of the models 
and reduce their predictive accuracy. In the data pre-processing phase, outliers 
are detected using statistical methods such as the z-score or interquartile range 
(IQR) and handled appropriately, either by transformation or removal, depending 
on their impact on the data.

•	 Data splitting. The dataset is split into training, validation, and testing sets to 
facilitate the development, tuning, and evaluation of predictive models. The 

Fig. 3   The countries in which our study was conducted
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training set is used to build the models, the validation set is used to fine-tune 
model parameters, and the testing set is used to evaluate the final model’s perfor-
mance.

•	 Balancing and sampling. In cases where the dataset is imbalanced, such as hav-
ing significantly more data for one crop over another, balancing techniques such 
as oversampling or undersampling may be employed to ensure fair and unbiased 
model training.

In Fig. 4, the potato crop info is shown and contrasted with information about 
another agricultural crop. This feature is very important for analyzing potato crop 
data with unique traits and patterns, something that other crops can only offer due 
to different methods of cultivation, environmental factors, and market demand. 
Providing these descriptive details to be grasped will guide the processing steps 
and layer the specific features of potato crop data into the study.

Therefore, data pre-processing tackles these challenging problems, and as a 
result, the data becomes a strong cornerstone for building accurate and depend-
able predictive models. The use of cleaned-up data for machine learning and deep 
learning enables the creation of models that can accurately predict potato crop 
yield. These forecasting models contribute to decision-making in agriculture.

Data Visualization

Data visualization plays a critical role in understanding the fundamental designs and 
associations in a data set. Through visualization, we can reveal the inner structure 
and distribution of data, which enables us to do the modeling and analysis more 
effectively. This part of the study is about the visualization methods used, which 
include the potato crop data and its other measurements (Qin et al. 2020).

Figure 5 illustrates the correlation heat map for potato crop measurements. The 
heatmap displays the pairwise correlations between the different variables in the 

Fig. 4   Outlines found in potato crop data compared to different crops
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dataset (such as weather features, including temperature, rainfall, soil properties, and 
potato yield). According to the heatmap, the color brightness is taken to be the mag-
nitude and direction of the correlation, where warm colors (reds) relate to positive 
correlation and cool colors (blues) relate to negative correlation. Through this vis-
ual approach, the most powerful features associated with potato yield are identified, 
thereby guiding the feature selection and model generation processes.

Figure 6 shows how potato yield data has been gathered from various countries 
and divided into regions. According to this visualization, variations in potato yield 
could reflect variations in agricultural methods, climate differences, or soil varia-
tions among regions. Knowledge about the variabilities of these differences can help 
in creating appropriate approaches to potato farming in a certain area. Furthermore, 
the graph will be a useful tool in identifying unusual or exceptionally high results 
that may deserve further examination.

Figure 7 is a hexbin plot showing the correlation between potato production 
and rainfall. For a hexbin plot, data points are sorted by their proximity to each 
other into hexagonal bins, which results in a clear view of data density. This 
visualization may bring to light the existence of such correlations between rain-
fall and potato yield, i.e., whether high or low rainfall is related to more or less 
yield. These discoveries can help in the creation of more precise forewarning 
systems and fine-tuning of irrigation-related activities.

Figure 8 is a histogram analysis of potato yield data, which provides the fre-
quency distribution of potato goods across the entire data set. This graph dem-
onstrates the descriptive statistics of the yield data, specifying the average, dis-
persion, and skewness. Yield distribution is important because the data mining 

Fig. 5   Correlation heatmap for potatoes data
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will apply the transformations and choose the model afterward, which will cap-
ture more data patterns.

Fig. 6   Potatoes yield distribution by country

Fig. 7   Hexbin plot for potatoes 
yield and rainfall
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These visualizations summarize the set of potato crop data by profitable 
relationships and trends, which gives an opportunity to run a detailed model. 
Therefore, this intelligence can be used to create more responsible and precise 
forecasts about potato production, hence improving the chance of effective deci-
sion-making in agricultural management.

Machine Learning Techniques

This section presents the machine learning algorithms utilized in this investigation 
to forecast crop farming yields. The selected approaches are equipped with a variety 
of methods, each with its power and capability to handle the different data and pre-
diction tasks. The purpose of these methods is to create predictive models starting 
from the pre-processed data elements.

Fig. 8   Histogram analysis for potatoes yield data
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K-nearest neighbors (KNN) are quite popular among the simple yet very effective 
instance-based learning algorithms. In KNN, the prediction for a new data point is 
determined using a majority vote from its k-nearest neighbors in the training set or 
a weighted average. The algorithm measures the distance using the most appropri-
ate metric (e.g., Euclidean distance) and then selects the nearest neighbors for the 
defined data point. KNN algorithm is based on its ability to find clear clustering 
structures and can predict as soon as it is trained. Nevertheless, it may be sensitive 
to noise and outliers, and the performance may be affected when the data is multi-
dimensional (Zaki et al. 2023b).

Gradient boosting is an ensemble learning technique that develops a model 
through the successive training of weak learners, which usually are decision trees, 
and by combining them into a stronger model. The algorithm optimizes the loss 
function by adding a new model that corrects the errors of the previous ones. The 
process of this iteration continues until a stopping criterion is reached, such as the 
number of iterations or a specific level of performance. Gradient boosting is effec-
tive in predicting and can process different kinds of input data. Nevertheless, that 
calls for the delicate tuning of the hyperparameters to prevent overfitting (Abdel-
malak et al. 2023).

XGBoost (extreme gradient boosting) is one of the most effective imports in gra-
dient boosting, and it has lots of tweaks for output presentation and efficiency. It 
ends up using regularization in order to fight overfitting and also makes sure par-
allelization occurs in order to optimize training time. One of its characteristics, 
XGBoost, is that it has a collection of objectives, functions, and performance meas-
ures that are designed for various tasks. This algorithm is exactly what machine 
learning competitions need, as it provides and delivers accuracy, speed, and versatil-
ity all at once (Noorunnahar et al. 2023).

Multilayer perceptron (MLP) is a category of neural networks that have a layered 
neural structure in which there are a number of layers of neurons. Neurons in the 
layer receive signals from previous layers and apply a non-linear activation function, 
which results in producing output. This output is used as input to the succeeding 
layers. The lower layer of the model is designed to make the output of predictions 
from the model. MLPs can recognize and explain extremely intricate, non-linear 
maneuvers in their possessed data through the optimization of SGD and BP algo-
rithms that adjust their performance. MLPs are known for their high flexibility and 
performance, especially when working with large datasets and complex patterns. 
Still, they do have a tricky part: maintaining an equilibrium on different parameters 
(Ahmed 2023).

These machine learning methods consist of a plethora of methods that exhibit 
the most benefits for particular crop types and general preferences of the task. In 
addition to comparing and evaluating model(s), we are working on getting the 
best present algorithm(s) working for the study.
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Deep Learning Techniques

Deep learning algorithms utilize neural network structures that consist of mul-
tiple layers to represent naturally the interrelations in data and to achieve highly 
efficient predictions:

Graph neural networks (GNNs) constitute an engineering family of neural net-
works that perform well when data are represented as graphs. Crop yield predic-
tion by GNNs constitutes a dependency structure that utilizes the modeling of 
relationships, whereas geographic localities and crop types represent data points. 
The graph’s composition is made up of nodes representing the bear elements 
(such as a farm or a crop). At the same time, the boundaries mark the relation-
ships between them (such as proximity, trade, or resemblance). GNN computes 
the features of the nodes as an edge among the graphs, which provide local infor-
mation and further amplify across the layer to capture implicit complex relation-
ships. The model can be made more sophisticated to deal with the field of agri-
cultural relations, which is bursting with intricacy (Fan et al. 2022).

Gated recurrent units (GRUs), which are a kind of recurrent neural network 
(RNN), are discussed as a solution to the problem of the inability to learn from 
sequential data like weather patterns and crop growth over time. GRUs possess 
gate mechanisms (update and reset gates) for signal flow control that allow the 
model to decide what it should keep from the past and throw away presumably 
irrelevant. The recurrent connection is for this RNN’s long-term dependence 
and time series remembrance. GRN is especially great in serving the purposes 
of future crop yield prediction because it is always necessary to obtain historical 
weather patterns and sequential data to decide to prepare for the coming crop sea-
son (Jin et al. 2020).

Long short-term memory networks (LSTMs) constitute yet another type of RNN 
designed to handle sequential information. On top of that, LSTMs and GRUs utilize 
gating mechanisms (input, output, and forget gates) and govern interactions through-
out the entire network. In this manner, LSTMs can recall exactly the comprehensive 
memory of meaningful information and associate it with longer sequences of the 
data and long-term dependencies. LSTMs are well suited for time series analysis, 
as this type of data contains information that has a movement in time from the past 
to the future. These models also carry information on the previous and future time 
frames. These give great insight into historical trends (Mateo-Sanchis et al. 2023).

These deep learning techniques that are useful with complication and high-
dimensional or sequential have the potential to become perfect prediction tools 
for crop yields. This research is based on the use of GNNs, GRUs, and LSTMS, 
which are capable of strong performance in modeling and showing their true, pre-
cise, and explainable predictions. The models that were developed will be used in 
the later decision-making process and will be part of the agricultural practices.
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Hyperparameter Tuning Process

Hyperparameter tuning is a crucial step in developing effective machine learning 
and deep learning models. The process involves selecting the optimal set of hyper-
parameters that improve model performance. Here, we discuss the hyperparameter 
tuning process for the specific models used in this study:

1.	 K-nearest neighbors (KNN)

•	 Hyperparameters

•	 Number of Neighbors (k)
•	 Distance Metric (e.g., Euclidean, Manhattan)

•	 Tuning Process:

•	 Grid Search: A range of k values (e.g., 1 to 20) was evaluated using grid 
search. Different distance metrics were also tested.

•	 Cross-Validation: 5-fold cross-validation was used to assess the perfor-
mance of each combination.

•	 Impact:

•	 The optimal k and distance metric were chosen based on minimizing error 
metrics (e.g., MSE). Smaller k values tended to capture more local pat-
terns, while larger k values smoothed predictions.

2.	 Gradient Boosting

•	 Hyper-parameters:

•	 Number of Trees
•	 Learning Rate
•	 Maximum Depth of Trees

•	 Tuning Process:

•	 Grid Search and Random Search: Both grid search and random search 
were employed to explore combinations of the number of trees, learning 
rate (e.g., 0.01, 0.1, 0.2), and tree depth (e.g., 3 to 10).

•	 Cross-Validation: 5-fold cross-validation was used to evaluate the perfor-
mance.

•	 Impact:
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•	 Optimal parameters were selected to balance the bias-variance trade-off. A 
lower learning rate with a higher number of trees typically improved accu-
racy but increased computational time.

3.	 XGBoost (Extreme Gradient Boosting)

•	 Hyper-parameters:

•	 Number of Trees
•	 Learning Rate
•	 Maximum Depth of Trees
•	 Subsample Ratio
•	 Colsample_bytree

•	 Tuning Process:

•	 Bayesian Optimization: Bayesian optimization was used to efficiently nav-
igate the hyper-parameter space.

•	 Grid Search: Follow-up grid search was conducted for fine-tuning the 
bestperforming ranges.

•	 Cross-Validation: 5-fold cross-validation was employed.

•	 Impact:

•	 Regularization parameters (e.g., alpha, lambda) helped prevent overfit-
ting. The combination of subsample and colsample_bytree parameters 
improved generalization by controlling the randomness in model training.

4.	 Multilayer Perceptron (MLP)

•	 Hyper-parameters:

•	 Number of Hidden Layers
•	 Number of Neurons per Layer
•	 Activation Function (e.g., ReLU, Sigmoid)
•	 Learning Rate
•	 Batch Size

•	 Tuning Process:

•	 Grid Search: A grid search over the number of layers (e.g., 1 to 5), neu-
rons per layer (e.g., 10 to 100), and activation functions.

•	 Random Search: Random search for learning rates (e.g., 0.001 to 0.1) and 
batch sizes (e.g., 16, 32, 64).

•	 Cross-Validation: 5-fold cross-validation was used to select the best con-
figuration.

•	 Impact:
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•	 The choice of activation function and the number of neurons directly 
affected the model’s ability to capture non-linear relationships. A balanced 
network depth and size helped manage overfitting and training time.

5.	 Graph Neural Networks (GNNs)

•	 Hyper-parameters:

•	 Number of Layers
•	 Learning Rate
•	 Batch Size
•	 Number of Neurons per Layer

•	 Tuning Process:

•	 Grid Search: Grid search for the number of layers (e.g., 2 to 6) and neu-
rons per layer.

•	 Random Search: Random search for learning rates and batch sizes.
•	 Cross-Validation: Used for performance evaluation.

•	 Impact:

•	 Deeper networks with more layers were able to capture complex spatial 
relationships but required careful regularization to avoid overfitting.

6.	 Gated Recurrent Units (GRUs)

•	 Hyper-parameters:

•	 Number of Layers
•	 Number of Units per Layer
•	 Learning Rate
•	 Batch Size

•	 Tuning Process:

•	 Grid Search: Explored number of layers (e.g., 1 to 3) and units per layer 
(e.g., 50 to 200).

•	 Random Search: Applied for learning rates and batch sizes.
•	 Cross-Validation: 5-fold cross-validation was used.

•	 Impact:

•	 More layers and units enhanced the ability to capture temporal dependen-
cies but required regularization techniques to prevent overfitting.

7.	 Long Short-Term Memory Networks (LSTMs)

•	 Hyper-parameters:
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•	 Number of Layers
•	 Number of Units per Layer
•	 Learning Rate
•	 Batch Size

•	 Tuning Process:

•	 Grid Search: Grid search for the number of layers and units per layer.
•	 Random Search: Random search for learning rates and batch sizes.
•	 Cross-Validation: Employed to determine the best configurations.

•	 Impact:

•	 LSTMs benefited from a higher number of units per layer for capturing 
longterm dependencies but required careful tuning of learning rates to 
ensure stable training.

The hyperparameter tuning process involved a combination of grid search, 
random search, and Bayesian optimization to find the optimal settings for each 
model. Cross-validation ensured that the selected hyperparameters generalized 
well to unseen data. This thorough tuning process significantly improved model 
performance, robustness, and reliability, thereby strengthening the study’s valid-
ity and practical applicability in agricultural yield prediction.

Experimental Results

This section reveals the results of the feasibility analysis of various machine learn-
ing and deep learning approaches applied for crop yield forecasting. The evalua-
tion criteria: mean squared error (MSE), root mean squared error (RMSE), mean 
absolute error (MAE), mean bias error (MBE), Pearson’s correlation coefficient 
(R), coefficient of determination (R2), relative root mean squared error (RRMSE), 
Nash–Sutcliffe efficiency (NSE), Willmott index (WI). These metrics enable the 
measurement, comparison, and evaluation of various models in terms of accuracy, 
reliability, and efficiency of the models.

Justification for the Selection of Specific Machine Learning Models

1.	 K-nearest neighbors (KNN):

•	 Justification: KNN is chosen for its simplicity and effectiveness in handling 
small to medium-sized datasets. It works well for identifying patterns and 
trends in the data by using a distance metric (e.g., Euclidean distance) to find 
the nearest neighbors. KNN does not require an intensive training process and 
can adapt quickly to new data.
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•	 Advantages: Simple, easy to implement, and effective for exploratory analy-
sis.

•	 Use case: Suitable for understanding the structure and distribution of the data 
and for initial benchmark comparisons.

2.	 Gradient boosting:

•	 Justification: Gradient boosting builds strong predictive models by combin-
ing the strengths of multiple weak learners. It incrementally improves the 
model by focusing on correcting the errors of the previous learners. This iter-
ative approach allows for high accuracy and robust performance.

•	 Advantages: High predictive accuracy, effective for various input data types, 
and good at capturing complex relationships.

•	 Use case: Ideal for tasks requiring detailed and accurate predictions, espe-
cially in scenarios with complex data interactions.

3.	 XGBoost (extreme gradient boosting):

•	 Justification: XGBoost enhances the basic gradient boosting technique by 
adding regularization to prevent overfitting and parallelization for faster train-
ing. It is known for its scalability, efficiency, and high performance in predic-
tive tasks.

•	 Advantages: Regularization to combat overfitting, fast training through paral-
lelization, and high accuracy.

•	 Use case: Suitable for large-scale data analysis and situations where computa-
tional efficiency and high precision are required.

4.	 Multilayer perceptron (MLP):

•	 Justification: MLPs are neural networks that can model complex, non-linear 
relationships in the data. They consist of multiple layers of neurons that trans-
form the input data through non-linear activation functions, making them 
highly flexible and capable of handling diverse data patterns.

•	 Advantages: High flexibility, ability to model non-linear interactions and 
strong performance on complex datasets.

•	 Use case: Effective for modeling intricate patterns and dependencies, espe-
cially in datasets with non-linear relationships.

Justification for the selection of specific deep learning models:

1.	 Graph neural networks (GNNs):

•	 Justification: GNNs are designed to work with data structured as graphs, 
making them ideal for capturing spatial dependencies and relationships 
between different data points. They leverage the graph structure to aggregate 
information from neighboring nodes, which is particularly useful for geo-
graphical and relational data.

•	 Advantages: Excellent for spatial data, ability to capture complex relation-
ships and strong performance on tasks involving networked data.
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•	 Use case: Suitable for analyzing spatial data and complex interactions in agri-
cultural contexts, such as relationships between different farms or crop types.

2.	 Gated recurrent units (GRUs):

•	 Justification: GRUs are a type of recurrent neural network (RNN) that effec-
tively handle sequential data. They include gating mechanisms to control the 
flow of information and retain relevant historical data, making them suitable 
for time series analysis and predictions based on historical trends.

•	 Advantages: Efficient handling of sequential data, reduced complexity com-
pared to other RNNs, and effective in capturing temporal dependencies.

•	 Use case: Ideal for tasks involving time series data, such as predicting future 
crop yields based on weather patterns and historical growth cycles.

3.	 Long short-term memory networks (LSTMs):

•	 Justification: LSTMs are an advanced type of RNN designed to capture long-
term dependencies in sequential data. They use input, output, and forget gates 
to manage the flow of information, preventing the vanishing gradient problem 
and allowing for the retention of long-term information.

•	 Advantages: Excellent at handling long-term dependencies, effective for time 
series analysis, and robust against vanishing gradient issues.

•	 Use case: Best suited for modeling long-term trends and making predictions 
based on extended historical data, such as multi-year crop yield patterns.

The selection of these specific machine learning and deep learning models is 
based on their strengths and suitability for handling the diverse and complex nature 
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Metric Formula

RMSE
�

1

N

∑N

n=1

�
V̂
n
− V

n

�2

RRMSE RMSE
∑N

n=1
V̂
n

× 100

MAE 1

N

∑N

n=1

�
��
V̂
n
− V

n

�
��

MBE 1

N

∑N

n=1

�
V̂
n
− V

n

�

NSE
1 −

∑N

n=1

�
V
n
−V̂

n

�2

∑N

n=1

�
V
n
−V̂

n

�2

WI
1 −

∑N

n=1

��
�
V̂
n
−V

n

��
�

∑N

n=1

���
V
n
−V

n

���
+
���
V̂
n
−V

n

���

R
2

1 −

∑N

n=1

�
V
n
−V̂

n

�2

∑N

n=1

�∑N

n=1
V
n

�
−V

n

�2

r
∑N

n=1

�
V̂
n
−V̂

n

��
V
n
−V

n

�

���
�

�
∑N

n=1

�

V̂
n
−V̂

n

�2
��

∑N

n=1

�
V
n
−V

n

�2
�



1 3

Potato Research	

of agricultural data. By leveraging the unique advantages of each model, the study 
aims to achieve high accuracy and robustness in potato yield prediction, ultimately 
supporting more informed and sustainable agricultural practices.

Performance Metrics

Table  1 shows the criteria used for evaluating the regression results, encompass-
ing various metrics to comprehensively assess model performance. The root mean 
squared error (RMSE) measures the square root of the average squared differences 
between predicted and actual values, providing insight into the magnitude of pre-
diction errors. The relative root mean squared error (RRMSE) normalizes RMSE 
by the sum of actual values, expressed as a percentage, allowing for comparisons 
across different scales. Mean absolute error (MAE) calculates the average of the 
absolute differences, offering a straightforward measure of accuracy less sensitive 
to outliers. Mean bias error (MBE) measures the average bias, indicating tenden-
cies to overestimate or underestimate. Nash–Sutcliffe efficiency (NSE) compares 
the predictive skill to the mean of observed data, with values closer to 1 indicat-
ing better performance. Willmott’s index of agreement (WI) evaluates the degree of 
agreement between predicted and observed values. The coefficient of determination 
(R2) indicates the proportion of variance predictable from the independent variables. 
Lastly, Pearson’s correlation coefficient (r) measures the linear correlation between 
predicted and actual values, with values closer to 1 or − 1 indicating stronger rela-
tionships. These metrics ensure a thorough evaluation of model accuracy, reliability, 
and predictive skill.

Machine Learning Techniques Results

Table 2 shows the revealed efficiency indices of several machine learning methods 
that have been used to predict crop yield in the study. The metrics include mean 
squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), 
mean bias error (MBE), Pearson’s correlation coefficient (R), coefficient of determi-
nation (R2), relative root mean squared error (RRMSE), Nash–Sutcliffe efficiency 
(NSE), Willmott’s index (WI), and fitted time. The metrics illustrate how precise 
and unbiased the models are in their predictions and also reveal the efficiency of 
predictions concerning a particular model.

In Fig. 9, the MSE charts show the disparity among the assorted machine learn-
ing techniques. The MSE calculation results in the sum of the quadratic differences 
between predicted and actual values, which is used as the accuracy indication. The 
opposite is true; the lower values indicate better predictive performance.

Figure 10 illustrates a violin plot that depicts the distribution of prediction errors 
for each machine-learning model in a graphical way. The plot allows for the assess-
ment of error variability between models as well as the positioning of helpful mod-
els within this variety, which helps to understand their degree of accuracy and 
reliability.
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Fig. 9   Mean squared error (MSE) comparison for machine learning techniques

Fig. 10   Violin plot of prediction errors for machine learning model
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Figure 11 shows the residual plot of machine learning model predictions. Residu-
als convey the difference between anticipated and in-place outcomes, and a prop-
erly fitted model would indicate a random diffusion around the zero line. The plot 
helps us to investigate the model’s functioning and detect patterns or biases in its 
predictions.

The results of these experiments have given us some knowledge about how 
machine learning methods are better at predicting crop yields. These insights can 
also optimize the models for real-world situations.

Deep Learning Techniques Results

In this section, we will present the findings of our deep-learning approach to crop 
yield prediction. Table  3 below gives the GNNs that are compared to GRUs and 
LSTMs. Metrics comprise mean squared error (MSE), root mean squared error 
(RMSE), mean absolute error (MIE), mean bias error (MBE), Pearson correlation 
coefficient (R), coefficient of determination (R2), relative root mean squared error 
(RRMSE), Nash–Sutcliffe efficiency (NSE), Willmott’s index (WI), and fitted.

Figure  12 summarizes MSE differences among all deep learning techniques in 
this research, including GNNs, GRUs, and LSTMs as model comparisons. MSE 
measures the square of the mean squared error between the predicted and the actual 
values, which renders a measure of the precision. Smaller values in the MSE coef-
ficient mean that the model is more precise and accurate in terms of prediction.

By means of this visual comparison, the efficiency of different deep learning 
approaches can be assessed and ranked, thus providing research and practice com-
munities with a tool to identify the most productive approach to crop yield predic-
tion. Such a comparison, in fact, cannot be overstated in guiding the correct selection 

Fig. 11   Residual plot of machine learning model predictions
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and application of deep learning models in reality because it may be crucial for sup-
ply and demand projections, and this may lead to appropriate planning and resource 
allocation.

Fig. 12   Mean squared error (MSE) comparison for deep learning techniques

Fig. 13   Violin plot of prediction errors for deep learning model
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Figure  13 illustrates a concise visualization of deep learning model prediction 
errors for each model through which violin plots are used. The violin plot carries the 
merger of the properties from both the boxplot and the kernel density plot onward 
so that the distribution and dispersion of data points can be represented in a highly 
detailed manner for each model. Each one of the violins depicts the density of pre-
diction errors for different levels of errors on the y-axis, and at the same time, the 
shape and the symmetry of each violin gives the nature of the error.

The violin plots are useful tools as you can easily see how widely the predictive 
errors are spread from each model. This chart can be examined to determine the 
confidence and stability of the prediction results. Furthermore, it can detect any bias 
or outliers in the data, which will signal a need for further model fine-tuning and 
optimization phases.

Figure 14 depicts the residual plot for predictions that the deep learning mod-
els made. Residual values are the differences between the observed values and the 
model’s prediction, and the residual plot examines the dependence of the mod-
el’s predictions on the input data. Ideally, the plot of actual and predicted events 
should show residuals scattered across the zero line, such that the models do not 
prejudice the predictions and do not systematically over- or under-predict.

The plot provides a platform to visually check whether the residuals cluster or 
systematically deviate from the central tendency of the model. Such deviation may 
convey the possibility of violations in the underlying assumptions or a need for more 
feature engineering. Uncovering the hidden patterns is obligatory for achieving 
model performance and making them more precise. In conclusion, the experiment 
plot confirms model strengths and weaknesses in crop yield prediction under differ-
ential climatic scenarios.

Fig. 14   Residual plot of deep learning model predictions
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Conclusion and Future Direction

In the study, we sought to find the best machine learning and deep learning tools for 
forecasting crop yields. The reporting data confirm the promise of those methods 
to enhance prediction accuracy and to give additional information for planning and 
making the right decisions. Both ML and DL models provide distinct strengths, hav-
ing a model based on different fatigue detection mechanisms used besides the issue 
of model precision and time needed to compute. With the help of empirical data, we 
determined the adequate models for better forecasting output from crops by taking 
into account the ecological aspects. It will help to develop techniques for increased 
agricultural productivity.

One of the techniques based on machine learning algorithms used for crop 
yield forecasting was K-nearest neighbors; another one was gradient boosting; 
some stopped at XGBoost and multilayer perceptron to verify the accuracy and 
reliability of the information that they obtained. The gradient boosting method 
and XGBoost, in particular, were observed to have a good performance, with the 
model performing well across different evaluation metrics and presenting a high 
predictive accuracy and robustness.

Deep neural networks, such as graph neural networks, gated recurrent units, 
and long short-term memory networks, were also considered. These models 
can recognize intricate details in the data and improve the precision of predic-
tions. GNNs were perceived to be productive for spatial aspects of data as they 
could capture the complex relationships and interconnections among several data 
points. In contrast, GRUs and LSTMs distinguished themselves as they displayed 
strong performance on temporal dependencies and patterns of sequential data.

While the results of this study are promising, there are several areas for future 
research and development:

•	 Model optimization and fine-tuning: Further optimization of hyperparameters 
and model architectures could lead to even greater improvements in predictive 
performance. Techniques such as automated machine learning (AutoML) could 
be employed to streamline this process.

•	 Integration of additional data sources: Incorporating more diverse data sources 
such as satellite imagery, remote sensing data, or market trends could enhance 
the models’ capabilities and lead to more accurate predictions.

•	 Explainable AI: As these advanced models become increasingly complex, devel-
oping methods to improve the interpretability and explainability of the predic-
tions is essential for practical adoption by farmers and policymakers.

•	 Real-time predictions: Exploring the feasibility of real-time or near-real-time 
predictions can provide valuable insights for dynamic decision-making in agri-
culture.

•	 Scalability and generalization: Research into the scalability of these models to 
larger datasets and different geographic regions will help ensure their broader 
applicability and impact.
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•	 Collaborative research: Continued collaboration between data scientists, agricul-
tural experts, and policymakers is critical to developing effective, practical, and 
sustainable solutions for crop yield prediction.

Finally, the utilization of machine learning and deep learning technologies 
for crop yield prediction would play a vital role in the advancement of modern 
agriculture and the resolution of hunger problems worldwide. More research in 
these areas and a desire for improvement and optimization will contribute to the 
development of precision farming and the efficient management of agricultural 
resources.

Acknowledgements  Princess Nourah bint Abdulrahman University Researchers Supporting Project num-
ber (PNURSP2024R 308), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability  Data are in a repository as public data at https://​www.​kaggle.​com/​datas​ets/​patel​ris/​
crop-​yield-​predi​ction-​datas​et.

Declarations 

Ethics Approval and Consent to Participate  Not applicable.

Consent for Publication  Not applicable.

Competing interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Abbas F, Afzaal H, Farooque AA, Tang S (2020) Crop yield prediction through proximal sensing and 
machine learning algorithms. Agronomy 10(7):7. https://​doi.​org/​10.​3390/​agron​omy10​071046

Abdelmalak MES, Gaber KS, Ahmed MA, OubeBlika N, Zaki AM, Eid MM (2023) BER-XGBoost: pot-
hole detection based on feature extraction and optimized XGBoost using BER Metaheuristic Algo-
rithm. J Artif Intell Metaheuristics 6(2):46–55. https://​doi.​org/​10.​54216/​JAIM.​060205

Abrougui K, Gabsi K, Mercatoris B, Khemis C, Amami R, Chehaibi S (2019) Prediction of organic 
potato yield using tillage systems and soil properties by artificial neural network (ANN) and multi-
ple linear regressions (MLR). Soil Till Res 190:202–208. https://​doi.​org/​10.​1016/j.​still.​2019.​01.​011

Ahmed S (2023) A software framework for predicting the maize yield using modified multi-layer percep-
tron. Sustainability 15(4):4. https://​doi.​org/​10.​3390/​su150​43017

Alibabaei K, Gaspar PD, Lima TM (2021) Crop yield estimation using deep learning based on climate 
big data and irrigation scheduling. Energies 14(11):11. https://​doi.​org/​10.​3390/​en141​13004

https://www.kaggle.com/datasets/patelris/crop-yield-prediction-dataset
https://www.kaggle.com/datasets/patelris/crop-yield-prediction-dataset
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agronomy10071046
https://doi.org/10.54216/JAIM.060205
https://doi.org/10.1016/j.still.2019.01.011
https://doi.org/10.3390/su15043017
https://doi.org/10.3390/en14113004


	 Potato Research

1 3

Anami BS, Malvade NN, Palaiah S (2020) Deep learning approach for recognition and classification of 
yield affecting paddy crop stresses using field images. Artif Intell Agric 4:12–20. https://​doi.​org/​10.​
1016/j.​aiia.​2020.​03.​001

Bali N, Singla A (2022) Emerging trends in machine learning to predict crop yield and study its influ-
ential factors: a survey. Arch Comput Methods Eng 29(1):95–112. https://​doi.​org/​10.​1007/​
s11831-​021-​09569-8

Călin AD, Coroiu AM, Mureşan HB (2023) Analysis of preprocessing techniques for missing data in 
the prediction of sunflower yield in response to the effects of climate change. Appl Sci 13(13):13. 
https://​doi.​org/​10.​3390/​app13​137415

Cao J, Zhang Z, Luo Y, Zhang L, Zhang J, Li Z, Tao F (2021a) Wheat yield predictions at a county and 
field scale with deep learning, machine learning, and Google Earth engine. Eur J Agron 123:126204. 
https://​doi.​org/​10.​1016/j.​eja.​2020.​126204

Cao J, Zhang Z, Tao F, Zhang L, Luo Y, Zhang J, Han J, Xie J (2021b) Integrating multi-source data for 
rice yield prediction across China using machine learning and deep learning approaches. Agric for 
Meteorol 297:108275. https://​doi.​org/​10.​1016/j.​agrfo​rmet.​2020.​108275

Cedric LS, Adoni WYH, Aworka R, Zoueu JT, Mutombo FK, Krichen M, Kimpolo CLM (2022) Crops 
yield prediction based on machine learning models: case of West African countries. Smart Agric 
Technol 2:100049. https://​doi.​org/​10.​1016/j.​atech.​2022.​100049

Chandraprabha, M., & Dhanaraj, R. K. (2020). Machine learning based pedantic analysis of predictive 
algorithms in crop yield management. 2020 4th International Conference on Electronics, Commu-
nication and Aerospace Technology (ICECA), 1340–1345. https://​doi.​org/​10.​1109/​ICECA​49313.​
2020.​92975​44

Crop Yield Prediction Dataset. (n.d.). . Retrieved April 22, 2024, from https://​www.​kaggle.​com/​datas​ets/​
patel​ris/​crop-​yield-​predi​ction-​datas​et

Darwin B, Dharmaraj P, Prince S, Popescu DE, Hemanth DJ (2021) Recognition of bloom/yield in crop 
images using deep learning models for smart agriculture: a review. Agronomy 11(4):4. https://​doi.​
org/​10.​3390/​agron​omy11​040646

Dubois A, Teytaud F, Verel S (2021) Short term soil moisture forecasts for potato crop farming: a 
machine learning approach. Comput Electron Agric 180:105902. https://​doi.​org/​10.​1016/j.​compag.​
2020.​105902

Durai SKS, Shamili MD (2022) Smart farming using machine learning and deep learning techniques. 
Decis Anal J 3:100041. https://​doi.​org/​10.​1016/j.​dajour.​2022.​100041

Elavarasan D, Vincent PMD (2020) Crop yield prediction using deep reinforcement learning model for 
sustainable agrarian applications. IEEE Access 8:86886–86901. https://​doi.​org/​10.​1109/​ACCESS.​
2020.​29924​80

Fan J, Bai J, Li Z, Ortiz-Bobea A, Gomes CP (2022) A GNN-RNN approach for harnessing geospa-
tial and temporal information: application to crop yield prediction. Proc AAAI Confer Artif Intell 
36(11):11. https://​doi.​org/​10.​1609/​aaai.​v36i11.​21444

Jayne TS, Sanchez PA (2021) Agricultural productivity must improve in sub-Saharan Africa. Science 
372(6546):1045–1047. https://​doi.​org/​10.​1126/​scien​ce.​abf54​13

Jin X-B, Yang N-X, Wang X-Y, Bai Y-T, Su T-L, Kong J-L (2020) Hybrid deep learning predictor for 
smart agriculture sensing based on empirical mode decomposition and gated recurrent unit group 
model. Sensors 20(5):5. https://​doi.​org/​10.​3390/​s2005​1334

Kang Y, Ozdogan M, Zhu X, Ye Z, Hain C, Anderson M (2020) Comparative assessment of environ-
mental variables and machine learning algorithms for maize yield prediction in the US Midwest. 
Environ Res Lett 15(6):064005. https://​doi.​org/​10.​1088/​1748-​9326/​ab7df9

Mateo-Sanchis A, Adsuara JE, Piles M, Munoz-Marí J, Perez-Suay A, Camps-Valls G (2023) Interpret-
able long short-term memory networks for crop yield estimation. IEEE Geosci Remote Sens Lett 
20:1–5. https://​doi.​org/​10.​1109/​LGRS.​2023.​32440​64

Mishra P, Mohamad Alshaib B, Kuamri B, Tiwari S, Singh AP, Yadav S, Sharma D, Kumari P (2023). 
Forecasting potato production in major South Asian countries: a comparative study of machine 
learning and time series models. Potato Res https://​doi.​org/​10.​1007/​s11540-​023-​09683-z

Nevavuori P, Narra N, Linna P, Lipping T (2020) Crop yield prediction using multitemporal UAV data 
and spatio-temporal deep learning models. Remote Sens 12(23):23. https://​doi.​org/​10.​3390/​rs122​
34000

Noorunnahar M, Chowdhury AH, Mila FA (2023) A tree based eXtreme gradient boosting (XGBoost) 
machine learning model to forecast the annual rice production in Bangladesh. PLoS ONE 
18(3):e0283452. https://​doi.​org/​10.​1371/​journ​al.​pone.​02834​52

https://doi.org/10.1016/j.aiia.2020.03.001
https://doi.org/10.1016/j.aiia.2020.03.001
https://doi.org/10.1007/s11831-021-09569-8
https://doi.org/10.1007/s11831-021-09569-8
https://doi.org/10.3390/app13137415
https://doi.org/10.1016/j.eja.2020.126204
https://doi.org/10.1016/j.agrformet.2020.108275
https://doi.org/10.1016/j.atech.2022.100049
https://doi.org/10.1109/ICECA49313.2020.9297544
https://doi.org/10.1109/ICECA49313.2020.9297544
https://www.kaggle.com/datasets/patelris/crop-yield-prediction-dataset
https://www.kaggle.com/datasets/patelris/crop-yield-prediction-dataset
https://doi.org/10.3390/agronomy11040646
https://doi.org/10.3390/agronomy11040646
https://doi.org/10.1016/j.compag.2020.105902
https://doi.org/10.1016/j.compag.2020.105902
https://doi.org/10.1016/j.dajour.2022.100041
https://doi.org/10.1109/ACCESS.2020.2992480
https://doi.org/10.1109/ACCESS.2020.2992480
https://doi.org/10.1609/aaai.v36i11.21444
https://doi.org/10.1126/science.abf5413
https://doi.org/10.3390/s20051334
https://doi.org/10.1088/1748-9326/ab7df9
https://doi.org/10.1109/LGRS.2023.3244064
https://doi.org/10.1007/s11540-023-09683-z
https://doi.org/10.3390/rs12234000
https://doi.org/10.3390/rs12234000
https://doi.org/10.1371/journal.pone.0283452


1 3

Potato Research	

Ortiz-Bobea A, Ault TR, Carrillo CM, Chambers RG, Lobell DB (2021) Anthropogenic climate change 
has slowed global agricultural productivity growth. Nat Clim Chang 11(4):306–312. https://​doi.​org/​
10.​1038/​s41558-​021-​01000-1

Pandey A, Mishra A (2017) Application of artificial neural networks in yield prediction of potato crop. 
Russ Agric Sci 43(3):266–272. https://​doi.​org/​10.​3103/​S1068​36741​70300​28

Paudel D, Boogaard H, de Wit A, Janssen S, Osinga S, Pylianidis C, Athanasiadis IN (2021) Machine 
learning for large-scale crop yield forecasting. Agric Syst 187:103016. https://​doi.​org/​10.​1016/j.​
agsy.​2020.​103016

Paudel D, Boogaard H, de Wit A, van der Velde M, Claverie M, Nisini L, Janssen S, Osinga S, Athana-
siadis IN (2022) Machine learning for regional crop yield forecasting in Europe. Field Crop Res 
276:108377. https://​doi.​org/​10.​1016/j.​fcr.​2021.​108377

Prasad Patnaik P, Padhy N (2023) An approach for potato yield prediction using machine learning regres-
sion algorithms. In: Kumar R, Pattnaik PK, Tavares JMRS (eds.) Next Generation of Internet of 
Things. Springer Nature, pp 327–336. https://​doi.​org/​10.​1007/​978-​981-​19-​1412-6_​27

Qin X, Luo Y, Tang N, Li G (2020) Making data visualization more efficient and effective: a survey. 
VLDB J 29(1):93–117. https://​doi.​org/​10.​1007/​s00778-​019-​00588-3

Rashid M, Bari BS, Yusup Y, Kamaruddin MA, Khan N (2021) A Comprehensive review of crop yield 
prediction using machine learning approaches with special emphasis on palm oil yield prediction. 
IEEE Access 9:63406–63439. https://​doi.​org/​10.​1109/​ACCESS.​2021.​30751​59

Schwalbert RA, Amado T, Corassa G, Pott LP, Prasad PVV, Ciampitti IA (2020) Satellite-based soybean 
yield forecast: integrating machine learning and weather data for improving crop yield prediction in 
southern Brazil. Agric for Meteorol 284:107886. https://​doi.​org/​10.​1016/j.​agrfo​rmet.​2019.​107886

Shahhosseini M, Hu G, Huber I, Archontoulis SV (2021) Coupling machine learning and crop modeling 
improves crop yield prediction in the US corn belt. Sci Rep 11(1):1606. https://​doi.​org/​10.​1038/​
s41598-​020-​80820-1

Shetty, S. A., Padmashree, T., Sagar, B. M., & Cauvery, N. K. (2021). Performance analysis on machine 
learning algorithms with deep learning model for crop yield prediction. In I. Jeena Jacob, S. Kolan-
dapalayam Shanmugam, S. Piramuthu, & P. Falkowski-Gilski (Eds.), Data Intelligence and Cogni-
tive Informatics (pp. 739–750). Springer. https://​doi.​org/​10.​1007/​978-​981-​15-​8530-2_​58

Shook J, Gangopadhyay T, Wu L, Ganapathysubramanian B, Sarkar S, Singh AK (2021) Crop yield pre-
diction integrating genotype and weather variables using deep learning. PLoS ONE 16(6):e0252402. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​02524​02

Sujatha R, Chatterjee JM, Jhanjhi N, Brohi SN (2021) Performance of deep learning vs machine learning 
in plant leaf disease detection. Microprocess Microsyst 80:103615. https://​doi.​org/​10.​1016/j.​micpro.​
2020.​103615

van Klompenburg T, Kassahun A, Catal C (2020) Crop yield prediction using machine learning: a sys-
tematic literature review. Comput Electron Agric 177:105709. https://​doi.​org/​10.​1016/j.​compag.​
2020.​105709

Wani JA, Sharma S, Muzamil M, Ahmed S, Sharma S, Singh S (2022) Machine learning and deep learn-
ing based computational techniques in automatic agricultural diseases detection: methodologies, 
applications, and challenges. Arch Comput Methods Eng 29(1):641–677. https://​doi.​org/​10.​1007/​
s11831-​021-​09588-5

Wolanin A, Mateo-García G, Camps-Valls G, Gómez-Chova L, Meroni M, Duveiller G, Liangzhi Y, 
Guanter L (2020) Estimating and understanding crop yields with explainable deep learning in the 
Indian Wheat Belt. Environ Res Lett 15(2):024019. https://​doi.​org/​10.​1088/​1748-​9326/​ab68ac

Zaki AM, Khodadadi N, Lim WH, Towfek SK (2023) Predictive analytics and machine learning in 
direct marketing for anticipating bank term deposit subscriptions. Am J Bus Oper Res 11(1):79–88. 
https://​doi.​org/​10.​54216/​AJBOR.​110110

Zaki AM, Abdelhamid AA, Ibrahim A, Eid MM, El-Kenawy E-SM (2023) Enhancing K-nearest neigh-
bors algorithm in wireless sensor networks through stochastic fractal search and particle swarm 
optimization. J Cybersecur Inf Manag 13(1):76–84. https://​doi.​org/​10.​54216/​JCIM.​130108

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.1038/s41558-021-01000-1
https://doi.org/10.1038/s41558-021-01000-1
https://doi.org/10.3103/S1068367417030028
https://doi.org/10.1016/j.agsy.2020.103016
https://doi.org/10.1016/j.agsy.2020.103016
https://doi.org/10.1016/j.fcr.2021.108377
https://doi.org/10.1007/978-981-19-1412-6_27
https://doi.org/10.1007/s00778-019-00588-3
https://doi.org/10.1109/ACCESS.2021.3075159
https://doi.org/10.1016/j.agrformet.2019.107886
https://doi.org/10.1038/s41598-020-80820-1
https://doi.org/10.1038/s41598-020-80820-1
https://doi.org/10.1007/978-981-15-8530-2_58
https://doi.org/10.1371/journal.pone.0252402
https://doi.org/10.1016/j.micpro.2020.103615
https://doi.org/10.1016/j.micpro.2020.103615
https://doi.org/10.1016/j.compag.2020.105709
https://doi.org/10.1016/j.compag.2020.105709
https://doi.org/10.1007/s11831-021-09588-5
https://doi.org/10.1007/s11831-021-09588-5
https://doi.org/10.1088/1748-9326/ab68ac
https://doi.org/10.54216/AJBOR.110110
https://doi.org/10.54216/JCIM.130108


	 Potato Research

1 3

Authors and Affiliations

El‑Sayed M. El‑Kenawy1 · Amel Ali Alhussan2 · Nima Khodadadi3   · 
Seyedali Mirjalili4 · Marwa M. Eid1,5

 *	 Nima Khodadadi 
	 nima.khodadadi@miami.edu

1	 Department of Communications and Electronics, Delta Higher Institute of Engineering 
and Technology, Mansoura 35111, Egypt

2	 Department of Computer Sciences, College of Computer and Information Sciences, Princess 
Nourah Bint Abdulrahman University, P.O. Box 84428, 11671 Riyadh, Saudi Arabia

3	 Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL, 
USA

4	 Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, 
Brisbane 4006, Australia

5	 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura, 
Egypt

http://orcid.org/0000-0002-8348-6530

	Predicting Potato Crop Yield with Machine Learning and Deep Learning for Sustainable Agriculture
	Abstract
	Introduction
	Related Works
	Materials and Methods
	Dataset
	Data Pre-processing
	Data Visualization
	Machine Learning Techniques
	Deep Learning Techniques
	Hyperparameter Tuning Process

	Experimental Results
	Justification for the Selection of Specific Machine Learning Models
	Performance Metrics
	Machine Learning Techniques Results
	Deep Learning Techniques Results

	Conclusion and Future Direction
	Acknowledgements 
	References


